日韩美在线观看视频黄-一级黄色片av免费看-日韩亚洲欧美中文字幕-中文日产幕无线码一二区

歡迎來到吉林省華博科技工業有限公司網站!
咨詢熱線

13009129951

當前位置:首頁  >  技術文章  >  電壓擊穿試驗儀美標標準ASTM D149

電壓擊穿試驗儀美標標準ASTM D149

更新時間:2009-03-19  |  點擊率:8725

Designation: D 149 – 97a (Reapproved 2004)
Standard Test Method for
Dielectric Breakdown Voltage and Dielectric Strength of
Solid Electrical Insulating Materials at Commercial Power
1
Frequencies
This standard is issued under the fixed designation D 149; the number immediay following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.
This standard has been approved for use by agencies of the Department of Defense.
1. Scope over). With the addition of instructions modifying Section 12,
this test method may be used for proof testing.
1.1 This test method covers procedures for the determina-
1.8 ThistestmethodissimilartoIECPublication243-1.All
tion of dielectric strength of solid insulating materials at
2,3 procedures in this method are included in IEC 243-1. Differ-
commercial power frequencies, under specified conditions.
ences between this methodand IEC 243-1 are largely editorial.
1.2 Unless otherwise specified, the tests shall be made at 60
1.9 This standard does not purport to address all of the
Hz. However, this test method may be used at any frequency
safety concerns, if any, associated with its use. It is the
from 25 to 800 Hz. At frequencies above 800 Hz, dielectric
responsibility of the user of this standard to establish appro-
heating may be a problem.
priate safety and health practices and determine the applica-
1.3 This test method is intended to be used in conjunction
bility of regulatory limitations prior to use. Specific hazard
with anyASTM standard or other document that refers to this
statements are given in Section 7. Also see 6.4.1.
test method. References to this document should specify the
particular options to be used (see 5.5).
2. Referenced Documents
1.4 It may be used at various temperatures, and in any
4
2.1 ASTM Standards:
suitable gaseous or liquid surrounding medium.
D 374 Test Methods for Thickness of Solid Electrical Insu-
1.5 This test method is not intended for measuring the
lation
dielectric strength of materials that are fluid under the condi-
D 618 Practice for Conditioning Plastics for Testing
tions of test.
D 877 Test Method for Dielectric Breakdown Voltage of
1.6 This test method is not intended for use in determining
Insulating Liquids Using Disk Electrodes
intrinsic dielectric strength, direct-voltage dielectric strength,
D 1711 Terminology Relating to Electrical Insulation
or thermal failure under electrical stress (see Test Method
D 2413 Practice for Preparation of Insulating Paper and
D3151).
Board Impregnated with a Liquid Dielectric
1.7 This test method is most commonly used to determine
D 3151 Test Method forThermal Failure of Solid Electrical
thedielectricbreakdownvoltagethroughthethicknessofatest
Insulating Materials Under Electric Stress
specimen (puncture). It may also be used to determine dielec-
D 3487 Specification for Mineral Insulating Oil Used in
tric breakdown voltage along the interface between a solid
Electrical Apparatus
specimen and a gaseous or liquid surrounding medium (flash-
D 5423 Specification for Forced-Convection Laboratory
Ovens for Electrical Insulation
1
This test method is under the jurisdiction of ASTM Committee D09 on 2.2 IEC Standard:
Electrical and Electronic Insulating Materials and is the direct responsibility of
Pub. 243-1 Methods of Test for Electrical Strength of Solid
Subcommittee D09.12 on Electrical Tests. 5
Insulating Materials—Part 1: Tests at Power Frequencies
Current edition approved March 1, 2004. Published March 2004. Originally
approved in 1922. Last previous edition approved in 1997 as D 149–97a.
2
Bartnikas, R., Chapter 3, “High Voltage Measurements,” Electrical Properties
4
of Solid Insulating Materials, Measurement Techniques, Vol. IIB, Engineering For referenced ASTM standards, visit the ASTM website, www.astm.org, or
Dielectrics, R. Bartnikas, Editor, ASTM STP 926, ASTM, Philadelphia, 1987. contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
3
Nelson, J. K., Chapter 5, “Dielectric Breakdown of Solids,” Electrical Standards volume information, refer to the standard’s Document Summary page on
Properties of Solid Insulating Materials: Molecular Structure and Electrical the ASTM website.
5
Behavior, Vol. IIA, Engineering Dielectrics, R. Bartnikas and R. M. Eichorn, Available from the International Electrotechnical Commission, Geneva, Swit-
Editors, ASTM STP 783, ASTM, Philadelphia, 1983. zerland.
Copyright (C) ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

D 149 – 97a (2004)
2.3 ANSI Standard: environmentalsituations.Thistestmethodisusefulforprocess
C68.1 Techniques for Dielectric Tests, IEEE Standard No. control, acceptance or research testing.
6
4 5.3 Resultsobtainedbythistestmethodcanseldombeused
directly to determine the dielectric behavior of a material in an
3. Terminology actual application. In most cases it is necessary that these
results be evaluated by comparison with results obtained from
3.1 Definitions:
other functional tests or from tests on other materials, or both,
3.1.1 dielectric breakdown voltage (electric breakdown
in order to estimate their significance for a particular material.
voltage), n—the potential difference at which dielectric failure
5.4 Three methods for voltage application are specified in
occurs under prescribed conditions in an electrical insulating
Section 12: Method A, Short-Time Test; Method B, Step-by-
material located between two electrodes. (See also Appendix
StepTest; and Method C, Slow Rate-of-RiseTest. MethodAis
X1.)
the most commonly-used test for quality-control tests. How-
3.1.1.1 Discussion—The term dielectric breakdown voltage
ever, the longer-time tests, Methods B and C, which usually
is sometimes shortened to “breakdown voltage.”
will give lower test results, may give more meaningful results
3.1.2 dielectric failure (under test), n—an event that is
whendifferentmaterialsarebeingcomparedwitheachother.If
evidencedbyanincreaseinconductanceinthedielectricunder
a test set with motor-driven voltage control is available, the
test limiting the electric field that can be sustained.
slow rate-of-rise test is simpler and preferable to the step-by-
3.1.3 dielectric strength, n—the voltage gradient at which
step test. The results obtained from Methods B and C are
dielectric failure of the insulating material occurs under spe-
comparable to each other.
cific conditions of test.
5.5 Documents specifying the use of this test method shall
3.1.4 electric strength, n—see dielectric strength.
also specify:
3.1.4.1 Discussion—Internationally, “electric strength” is
5.5.1 Method of voltage application,
used almost universally.
5.5.2 Voltage rate-of-rise, if slow rate-of-rise method is
3.1.5 flashover, n—a disruptive electrical discharge at the
specified,
surface of electrical insulation or in the surrounding medium,
5.5.3 Specimen selection, preparation, and conditioning,
which may or may not cause permanent damage to the
5.5.4 Surrounding medium and temperature during test,
insulation.
5.5.5 Electrodes,
3.1.6 For definitions of other terms relating to solid insulat-
5.5.6 Wherever possible, the failure criterion of the current-
ing materials, refer to Terminology D 1711.
sensing element, and
4. Summary of Test Method 5.5.7 Any desired deviations from the recommended proce-
dures as given.
4.1 Alternating voltage at a commercial power frequency
5.6 If any of the requirements listed in 5.5 are missing from
(60 Hz, unless otherwise specified) is applied to a test
the specifying document, then the recommendations for the
specimen. The voltage is increased from zero or from a level
several variables shall be followed.
well below the breakdown voltage, in one of three prescribed
5.7 Unless the items listed in 5.5 are specified, tests made
methods of voltage application, until dielectric failure of the
with such inadequate reference to this test method are not in
test specimen occurs.
conformancewiththistestmethod.Iftheitemslistedin5.re
4.2 Mostcommonly,thetestvoltageisappliedusingsimple
not closely controlled during the test, the precisions stated in
test electrodes on opposite faces of specimens. The specimens
15.2 and 15.3 may not be realized.
may be molded or cast, or cut from flat sheet or plate. Other
5.8 Variations in the failure criteria (current setting and
electrode and specimen configurations may be used to accom-
response time) of the current sensing element significantly
modate the geometry of the sample material, or to simulate a
affect the test results.
specific application for which the material is being evaluated.
5.9 Appendix X1. contains a more complete discussion of
the significance of dielectric strength tests.
5. Significance and Use
5.1 The dielectric strength of an electrical insulating mate- 6. Apparatus
rial is a property of interest for any application where an
6.1 Voltage Source—Obtain the test voltage from a step-up
electrical field will be present. In many cases the dielectric
transformer supplied from a variable sinusoidal low-voltage
strength of a material will be the determining factor in the
source. The transformer, its voltage source, and the associated
design of the apparatus in which it is to be used.
controls shall have the following capabilities:
5.2 Tests made as specified herein may be used to provide
6.1.1 The ratio of crest to root-mean-square (rms) test
part of the information needed for determining suitability of a
voltage shall be equal to =2 6 5% (1.34 to 1.48), with the
materialforagivenapplication;andalso,fordetectingchanges
test specimen in the circuit, at all voltages greater than 50 % of
or deviations from normal characteristics resulting from pro-
the breakdown voltage.
cessing variables, aging conditions, or other manufacturing or
6.1.2 The capacity of the source shall be sufficient to
maintainthetestvoltageuntildielectricbreakdownoccurs.For
most materials, using electrodes similar to those shown in
6 Table 1, an output current capacity of 40 mA is usually
Available fromAmerican National Standards Institute (ANSI), 25 W. 43rd St.,
4th Floor, New York, NY 10036. satisfactory. For more complex electrode structures, or for

D 149 – 97a (2004)
A
TABLE 1 Typical Electrodes for Dielectric Strength Testing of Various Types of Insulating Materials
Electrode
B,C
Description of Electrodes Insulating Materials
Type
1 Opposing cylinders 51 mm (2 in.) in diameter, 25 mm (1 in.) thick with flat sheets of paper, films, fabrics, rubber, molded plastics, laminates,
edges rounded to 6.4 mm (0.25 in.) radius boards, glass, mica, and ceramic
2 Opposing cylinders 25 mm (1 in.) in diameter, 25 mm (1 in.) thick with same as for Type 1, particularly for glass, mica, plastic, and ceramic
edges rounded to 3.2 mm (0.125 in.) radius
3 Opposing cylindrical rods 6.4 mm (0.25 in.) in diameter with edges same as for Type 1, particularly for varnish, plastic, and other thin film and
D
rounded to 0.8 mm (0.0313 in.) radius tapes: where small specimens necessitate the use of smaller electrodes,
or where testing of a small area is desired
4 Flat plates 6.4 mm (0.25 in.) wide and 108 mm (4.25 in.) long with edges same as for Type 1, particularly for rubber tapes and other narrow widths
square and ends rounded to 3.2 mm (0.125 in.) radius of thin materials
E
5 Hemispherical electrodes 12.7 mm (0.5 in.) in diameter filling and treating compounds, gels and semisolid compounds and greases,
embedding, potting, and encapsulating materials
6 Opposing cylinders; the lower one 75 mm (3 in.) in diameter, 15 mm same as for Types 1 and 2
(0.60 in.) thick; the upper one 25 mm (1 in.) in diameter, 25 mm
F
thick; with edges of both rounded to 3 mm (0.12 in.) radius
G
7 Opposing circular flat plates, 150 mm diameter , 10 mm thick with flat sheet, plate, or board materials, for tests with the voltage gradient
H
edges rounded to 3 to 5 mm radius parallel to the surface
A
TheseelectrodesarethosemostcommonlyspecifiedorreferencedinASTMstandards.WiththeexceptionofType5electrodes,noattempthasbeenmadetosuggest
electrode systems for other than flat surface material. Other electrodes may be used as specified in ASTM standards or as agreed upon between seller and purchaser
where none of these electrodes in the table is suitable for proper evaluation of the material being tested.
B
Electrodes are normally made from either brass or stainless steel. Reference should be made to the standard governing the material to be tested to determine which,
if either, material is preferable.
C
The electrodes surfaces should be polished and free from irregularities resulting from previous testing.
D
Refer to the appropriate standard for the load force applied by the upper electrode assembly. Unless otherwise specified the upper electrodes shall be 50 6 2g.
E
Refer to the appropriate standard for the proper gap settings.
F
The Type 6 electrodes are those given in IEC Publication 243-1 for testing of flat sheet materials. They are less critical as to concentricity of the electrodes than are
the Types 1 and 2 electrodes.
G
Other diameters may be used, provided that all parts of the test specimen are at least 15 mm inside the edges of the electrodes.
H G
The Type 7 electrodes, as described in the table and in Note , are those given in IEC Publication 243-1 for making tests parallel to the surface.
testing high-loss materials, higher current capacity may be one current setting. The electrode area may have a significant
needed.Thepowerratingformosttestswillvaryfrom0.5kVA effect upon what the current setting should be.
for testing low-capacitance specimens at voltages up to 10 kV, 6.1.7 The specimen current-sensing element may be in the
to 5 kVA for voltages up to 100 kV. primary of the step-up transformer. Calibrate the current-
6.1.3 The controls on the variable low-voltage source shall sensing dial in terms of specimen current.
be capable of varying the supply voltage and the resultant test 6.1.8 Exercise care in setting the response of the current
voltage smoothly, uniformly, and without overshoots or tran- control. If the control is set too high, the circuit will not
sients, in accordance with 12.2. Do not allow the peak voltage respondwhenbreakdownoccurs;ifsettoolow,itmayrespond
to exceed 1.48 times the indicated rms test voltage under any to leakage currents, capacitive currents, or partial discharge
circumstance. Motor-driven controls are preferable for making (corona)currentsor,whenthesensingelementislocatedinthe
short-time (see 12.2.1) or slow-rate-of-rise (see 12.2.3) tests. primary, to the step-up transformer magnetizing current.
6.1.4 Equip the voltage source with a circuit-breaking 6.2 Voltage Measurement—A voltmeter must be provided
device that will operate within three cycles. The device shall for measuring the rms test voltage. A peak-reading voltmeter
disconnect the voltage-source equipment from the power may be used, in which case divide the reading by =2toget
service and protect it from overload as a result of specimen rms values. The overall error of the voltage-measuring circuit
breakdown causing an overload of the testing apparatus. If shall not exceed 5 % of the measured value. In addition, the
prolonged current follows breakdown it will result in unnec- response time of the voltmeter shall be such that its time lag
essary burning of the test specimens, pitting of the electrodes, will not be greater than 1% of full scale at any rate-of-rise
and contamination of any liquid surrounding medium. used.
6.1.5 The circuit-breaking device should have an adjustable 6.2.1 Measure the voltage using a voltmeter or potential
current-sensing element in the step-up transformer secondary, transformer connected to the specimen electrodes, or to a
to allow for adjustment consistent with the specimen charac- separate voltmeter winding, on the test transformer, that is
teristics and arranged to sense specimen current. Set the unaffected by the step-up transformer loading.
sensing element to respond to a current that is indicative of 6.2.2 It is desirable for the reading of the maximum applied
specimen breakdown as defined in 12.3. test voltage to be retained on the voltmeter after breakdown so
6.1.6 The current setting can have a significant effect on the that the breakdown voltage can be accuray read and re-
test results. Make the setting high enough that transients, such corded.
as partial discharges, will not trip the breaker but not so high 6.3 Electrodes—For a given specimen configuration, the
thatexcessiveburningofthespecimen,withresultanectrode dielectric breakdown voltage may vary considerably, depend-
damage, will occur on breakdown. The optimum current inguponthegeometryandplacementofthetesectrodes.For
setting is not the same for all specimens and depending upon this reason it is important that the electrodes to be used be
the intended use of the material and the purpose of the test, it described when specifying this test method, and that they be
may be desirable to make tests on a given sample at more than described in the report.

D 149 – 97a (2004)
6.3.1 One of the electrodes listed in Table 1 should be the test values. Testing in air may require excessively large
specified by the document referring to this test method. If no specimens or cause heavy surface discharges and burning
electrodes have been specified, select an applicable one from before breakdown. Some electrode systems for testing in air
Table 1, or use other electrodes mutually acceptable to the make use of pressure gaskets around the electrodes to prevent
parties concerned when the standard electrodes cannot be used flashover. The material of the gaskets or seals around the
due to the nature or configuration of the material being tested. electrodes may influence the breakdown values.
See references in Appendix X2 for examples of some special 6.4.1 When tests are made in insulating oil, an oil bath of
electrodes.Inanyeventtheelectrodesmustbedescribedinthe adequate size shall be provided. (Caution—The use of glass
report. containers is not recommended for tests at voltages above
6.3.2 The electrodes of Types 1 through 4 and Type 6 of about10kV,becausetheenergyreleasedatbreakdownmaybe
Table 1 should be in contact with the test specimen over the sufficient to shatter the container. Metal baths must be
entire flat area of the electrodes. grounded.)
6.3.3 The specimens tested using Type 7 electrodes should It is recommended that mineral oil meeting the requirements
be of such size that all portions of the specimen will be within of Specification D 3487, Type I or II, be used. It should have a
andnolessthan15mmfromtheedgesoftheelectrodesduring dielectric breakdown voltage as determined by Test Method
test. In most cases, tests usingType 7 electrodes are made with D 877 of at least 26 kV. Other dielectric fluids may be used as
the plane of the electrode surfaces in a vertical position. Tests surrounding mediums if specified. These include, but are not
made with horizontal electrodes should not be directly com- limited to, silicone fluids and other liquids intended for use in
pared with tests made with vertical electrodes, particularly transformers, circuit breakers, capacitors, or cables.
when the tests are made in a liquid surrounding medium.
6.4.1.1 The quality of the insulating oil may have an
6.3.4 Keep the electrode surfaces clean and smooth, and appreciable effect upon the test results. In addition to the
freefromprojectingirregularitiesresultingfromprevioustests. dielectric breakdown voltage, mentioned above, particulate
If asperities have developed, they must be removed. contaminants are especially important when very thin speci-
6.3.5 It is important that the original manufacture and mens (25 μm (1 mil) or less) are being tested. Depending upon
subsequent resurfacing of electrodes be done in such a manner the nature of the oil and the properties of the material being
that the specified shape and finish of the electrodes and their tested, other properties, including dissolved gas content, water
edges are maintained. The flatness and surface finish of the content, and dissipation factor of the oil may also have an
electrode faces must be such that the faces are in close contact effect upon the results. Frequent replacement of the oil, or the
with the test specimen over the entire area of the electrodes. use of filters and other reconditioning equipment may be
Surface finish is particularly important when testing very thin necessary to minimize the effect of variations of the quality of
materials which are subject to physical damage from improp- the oil on the test results.
erly finished electrodes. When resurfacing, do not change the 6.4.1.2 Breakdown values obtained using liquids having
transition between the electrode face and any specified edge different electrical properties may not be comparable. (See
radius. X1.4.7.)Iftestsaretobemadeatotherthanroomtemperature,
6.3.6 Whenever the electrodes are dissimilar in size or the bath must be provided with a means for heating or cooling
shape, the one at which the lowest concentration of stress the liquid, and with a means to ensure uniform temperature.
exists, usually the larger in size and with the largest radius, Small baths can in some cases be placed in an oven (see 6.4.2)
should be at ground potential. in order to provide temperature control. If forced circulation of
6.3.7 In some special cases liquid metal electrodes, foil the fluid is provided, care must be taken to prevent bubbles
electrodes, metal shot, water, or conductive coating electrodes from being whipped into the fluid. The temperature shall be
are used. It must be recognized that these may give results maintainedwithin65°Cofthespecifiedtesttemperatureatthe
differing widely from those obtained with other types of electrodes, unless otherwise specified. In many cases it is
electrodes. specified that specimens to be tested in insulating oil are to be
6.3.8 Because of the effect of the electrodes on the test previously impregnated with the oil and not removed from the
results, it is frequently possible to obtain additional informa- oilbeforetesting(seePracticeD2413).Forsuchmaterials,the
tion as to the dielectric properties of a material (or a group of bath must be of such design that it will not be necessary to
materials) by running tests with more than one type of expose the specimens to air before testing.
electrode. This technique is of particular value for research 6.4.2 If tests in air are to be made at other than ambient
testing. temperature or humidity, an oven or controlled humidity
6.4 Surrounding Medium—The document calling for this chamber must be provided for the tests. Ovens meeting the
test method should specify the surrounding medium and the requirementsofSpecificationD 5423andprovidedwithmeans
test temperature. Since flashover must be avoided and the for introducing the test voltage will be suitable for use when
effects of partial discharges prior to breakdown mimimized, only temperature is to be controlled.
even for short time tests, it is often preferable and sometimes 6.4.3 Testsingassesotherthanairwillgenerallyrequirethe
necessary to make the tests in insulating liquid (see 6.4.1). use of chambers that can be evacuated and filled with the test
Breakdown values obtained in insulating liquid may not be gas, usually under some controlled pressure. The design of
comparable with those obtained in air. The nature of the such chambers will be determined by the nature of the test
insulating liquid and the degree of previous use may influence program to be undertaken.

D 149 – 97a (2004)
6.5 Test Chamber—The test chamber or area in which the 8.2 Sampling procedures for quality control purposes
tests are to be made shall be of sufficient size to hold the test should provide for gathering of sufficient samples to estimate
equipment, and shall be provided with interlocks to prevent both the average quality and the variability of the lot being
accidental contact with any electrically energized parts. A examined; and for proper protection of the samples from the
number of different physical arrangements of voltage source, time they are taken until the preparation of the test specimens
measuring equipment, baths or ovens, and electrodes are in the laboratory or other test area is begun.
possible, but it is essential that (1) all gates or doors providing 8.3 For the purposes of most tests it is desirable to take
access to spaces in which there are electrically energized parts samples from areas that are not immediay adjacent to
be interlocked to shut off the voltage source when opened; ( 2) obvious defects or discontinuities in the material. The outer
clearances are sufficiently large that the field in the area of the few layers of roll material, the top sheets of a package of
electrodes and specimen are not distorted and that flashovers sheets, or material immediay next to an edge of a sheet or
and partial discharges (corona) do not occur except between roll should be avoided, unless the presence or proximity of
the test electrodes; and (3) insertion and replacement of defects or discontinuities is of interest in the investigation of
specimens between tests be as simple and convenient as the material.
possible.Visualobservationoftheelectrodesandtestspecimen 8.4 The sample should be large enough to permit making as
during the test is frequently desirable. many individual tests as may be required for the particular
material (see 12.4).
7. Hazards
9. Test Specimens
7.1 Warning—Lethal voltages may be present during this
9.1 Preparation and Handling:
test. It is essential that the test apparatus, and all associated
9.1.1 Prepare specimens from samples collected in accor-
equipment that may be electrically connected to it, be properly
dance with Section 8.
designed and installed for safe operation. Solidly ground all
9.1.2 When flat-faced electrodes are to be used, the surfaces
electrically conductive parts that any person might come into
of the specimens which will be in contact with the electrodes
contact with during the test. Provide means for use at the
shall be smooth parallel planes, insofar as possible without
completion of any test to ground any parts which: were at high
actual surface machining.
voltage during the test; may have acquired an induced charge
9.1.3 The specimens shall be of sufficient size to prevent
duringthetest;mayretaina chargeeven after disconnection of
flashover under the conditions of test. For thin materials it may
the voltage source. Thoroughly instruct all operators in the
be convenient to use specimens large enough to permit making
proper way to conduct tests safely. When making high-voltage
more than one test on a single piece.
tests, particularly in compressed gas or in oil, the energy
9.1.4 For thicker materials (usually more than 2 mm thick)
released at breakdown may be sufficient to result in fire,
the breakdown strength may be high enough that flashover or
explosion, or rupture of the test chamber. Design test equip-
intense surface partial discharges (corona) may occur prior to
ment, test chambers, and test specimens so as to minimize the
breakdown. Techniques that may be used to prevent flashover,
possibility of such occurrences and to eliminate the possibility
or to reduce partial discharge (corona) include:
of personal injury.
9.1.4.1 Immerse the specimen in insulating oil during the
7.2 Warning—Ozone is a physiologically hazardous gas at
test. See X1.4.7 for the surrounding medium factors influenc-
elevated concentrations. The exposure limits are set by gov-
ingbreakdown.Thismaybenecessaryforspecimensthathave
ernmental agencies and are usually based upon recommenda-
not been dried and impregnated with oil, as well as for those
tions made by the American Conference of Governmental
7
whichhavebeenpreparedinaccordancewithPracticeD 2413,
Industrial Hygienists. Ozone is likely to be present whenever
for example. (See 6.4.)
voltagesexistwhicharesufficienttocausepartial,orcomplete,
9.1.4.2 Machinearecessordrillaflat-bottomholeinoneor
discharges in air or other atmospheres that contain oxygen.
both surfaces of the specimen to reduce the test thickness. If
Ozone has a distinctive odor which is initially discernible at
dissimilar electrodes are used (such as Type 6 of Table 1) and
low concentrations but sustained inhalation of ozone can cause
only one surface is to be machined, the larger of the two
temporary loss of sensitivity to the scent of ozone. Because of
electrodes should be in contact with the machined surface.
thisitisimportanttomeasuretheconcentrationofozoneinthe
Caremustbetakeninmachiningspecimensnottocontaminate
atmosphere, using commercially available monitoring devices,
or mechanically damage them.
whenever the odor of ozone is persistently present or when
9.1.4.3 Apply seals or shrouds around the electrodes, in
ozone generating conditions continue. Use appropriate means,
contact with the specimen to reduce the tendency to flashover.
such as exhaust vents, to reduce ozone concentrations to
9.1.5 Materials that are not in flat sheet form shall be tested
acceptable levels in working areas.
using specimens (and electrodes) appropriate to the material
8. Sampling and the geometry of the sample. It is essential that for these
materials both the specimen and the electrodes be defined in
8.1 The detailed sampling procedure for the material being
the specification for the material.
tested should be defined in the specification for that material.
9.1.6 Whatever the form of the material, if tests of other
than surface-to-surface puncture strength are to be made,
7 define the specimens and the electrodes in the specification for
Available from the American Conference of Governmental Industrial Hygien-
ists, Building No. D-7, 6500 Glenway Ave., Cincinnati, OH 45211. the material.

D 149 – 97a (2004)
9.2 In nearly all cases the actual thickness of the test
specimenisimportant.Unlessotherwisespecified,measurethe
thickness after the test in the immediate vicinity of the area of
breakdown. Measurements shall be made at room temperature
(25 6 5°C), using the appropriate procedure of Test Methods
D374.
10. Calibration
10.1 In making calibration measurements, take care that the
valuesofvoltageattheelectrodescanbedeterminedwithinthe
accuracy given in 6.2, with the test specimens in the circuit. Rates
(V/s) 6 20 %
10.2 Use an independently calibrated voltmeter attached to
100
the output of the test voltage source to verify the accuracy of 200
500
the measuring device. Electrostatic voltmeters, voltage divid-
1000
ers,orpotentialtransformershavingcomparableaccuracymay
2000
be used for calibration measurement. 5000
10.3 At voltages above about 12 kV rms (16.9 kV peak) a FIG. 1 Voltage Profile of the Short-Time Test
sphere gap may be used to calibrate the readings of the
voltage-measuring device. Follow procedures as specified in
ANSI C68.1 in such calibration.
occasionalaveragetimetobreakdownfallingoutsidetherange
of 10 to 20 s. In this case, the times to failures shall be made
11. Conditioning
a part of the report.
11.1 The dielectric strength of most solid insulating mate- 12.2.1.3 In running a series of tests comparing different
rials is influenced by temperature and moisture content. Mate- material, the same rate-of-rise shall be used with preference
rials so affected should be brought to equilibrium with an given to a rate that allows the average time to be between 10
atmosphere of controlled temperature and relative humidity and 20 s. If the time to breakdown cannot be adhered to, the
before testing. For such materials, the conditioning should be time shall be made a part of the report.
included in the standard referencing this test method. 12.2.2 Method B, Step-by-Step Test—Apply voltage to the
11.2 Unless otherwise specified, follow the procedures in test electrodes at the preferred starting voltage and in steps and
Practice D618. duration as shown in Fig. 2 until breakdown occurs.
12.2.2.1 From the list in Fig. 2, select the initial voltage, V ,
11.3 For many materials the moisture content has more s
to be the one closest to 50 % of the experimentally determined
effect on dielectric strength than does temperature. Condition-
or expected breakdown voltage under the short time test.
ing times for these materials should be sufficiently long to
12.2.2.2 If an initial voltage other than one of the preferred
permit the specimens to reach moisture equilibrium as well as
values listed in Fig. 2 is selected, it is recommended that the
temperature equilibrium.
voltage steps be 10% of the preferred initial voltage immedi-
11.4 If the conditioning atmosphere is such that condensa-
ay below the selected value.
tionoccursonthesurfaceofthespecimens,itmaybedesirable
12.2.2.3 Apply the initial voltage by increasing the voltage
to wipe the surfaces of the specimens immediay before
from zero as rapidly as can be accomplished without introduc-
testing. This will usually reduce the probability of surface
ing a peak voltage exceeding that permitted in 6.1.3. Similar
flashover.
requirements shall apply to the procedure used to increase the
voltagebetweensuccessivesteps.Aftertheinitialstep,thetime
12. Procedure
required to raise the voltage to the succeeding step shall be
12.1 (Caution—see Section 7 before commencement of
counted as part of the time at the succeeding step.
any test.)
12.2.2.4 If breakdown occurs while the voltage is being
12.2 Methods of Voltage Application:
increased to the next step, the specimen is described as having
12.2.1 Method A, Short-Time Test—Apply voltage uni- sustained a dielectric withstand voltage, V , equal to the
ws
formlytothetesectrodesfromzeroatoneoftheratesshown voltage of the step just ended. If breakdown occurs prior to the
inFig.1untilbreakdownoccurs.Usetheshort-timetestunless end of the holding period at any step, the dielectric withstand
otherwise specified. voltage,V ,forthespecimenistakenasthevoltageatthelast
ws
12.2.1.1 When establishing a rate initially in order for it to completedstep.Thevoltageatbreakdown,V ,istobeusedto
bd
beincludedinanewspecification,selectaratethat,foragiven calculate dielectric breakdown strength. The dielectric with-
set of specimens, will give an average time to breakdown of stand strength is to be calculated from the thickness and the
between 10 and 20 s. It may be necessary to run one or two dielectric withstand voltage, V . (See Fig. 2.)
ws
preliminary tests in order to determine the most suitable 12.2.2.5 It is desirable that breakdown occur in four to ten
rate-of-rise. For many materials a rate of 500 V/s is used. steps, but in not less than 120 s. If failure occurs at the third
12.2.1.2 If the document referencing this test method speci- steporless,orinlessthan120s,whicheverisgreater,onmore
fied a rate-of-rise, it shall be used consistently in spite of thanonespecimeninagroup,thetestsshouldberepeatedwith
6

D 149 – 97a (2004)
Rates (V/s) 6 20 % Constraints
1 tbd > 120 s
2
5
Preferred starting voltages, V are 0.25, 0.50, 1, 2, 5, 10, 20, 50, and 100 kV.
s
10 Vbd = > 1.5 Vs
Step Voltage 12.5
when Increment 20
A
Vs(kV) is (kV) 25
50
5 or less 10 % of Vs
100
over 5 to 10 0.50
over 10 to 25 1 FIG. 3 Voltage Profile of Slow Rate-of-Rise Test
over 25 to 50 2
over 50 to 100 5
over 100 10
greater than 2.5 times the initial value (and at a time of over
A
Vs = 0.5 ( Vbd for Short-Time Test) unless constraints cannot be met.
________________________________________________________________ 120 s), increase the initial voltage.
Constraints
12.3 Criteria of Breakdown—Dielectric failure or dielectric
(t 1 - t0)=(t2 - t1) = ... = (60 6 5)s
Alternate step times, (20 6 3)s and (300 6 10)s breakdown (as defined in Terminology D 1711) consists of an
120s # t # 720s, for 60s steps
bd increase in conductance, limiting the electric field that can be
________________________________________________________________
sustained. This phenomenon is most commonly evidenced
FIG. 2 Voltage Profile of Step-by-Step Test
duringthetestbyanabruptvisibleandaudiblerupturethrough
the thickness of the specimen, resulting in a visible puncture
a lower initial voltage. If failure does not occur before the and decomposition of the specimen in the breakdown area.
twelfth step or greater than 720 s, increase the initial voltage. This form of breakdown is generally irreversible. Repeated
12.2.2.6 Record the initial voltage, the voltage steps, the applicationsofvoltagewillsometimesresultinfailureatlower
breakdown voltage, and the length of time that the breakdown
voltages (sometimes unmeasurably low), usually with addi-
voltage was held. If failure occurred while the voltage was
tional damage at the breakdown area. Such repeated applica-
being increased to the starting voltage the failure time shall be
tions of voltage may be used to give positive evidence of
zero.
breakdown and to make the breakdown path more visible.
12.2.2.7 Other time lengths for the voltage steps may be
12.3.1 Arapid rise in leakage current may result in tripping
specified, depending upon the purpose of the test. Commonly
of the voltage source without visible decomposition of the
used lengths are 20 s and 300 s (5 min). For research purposes,
specimen. This type of failure, usually associated with slow-
it may be of value to conduct tests using more than one time
rise tests at elevated temperatures, may in some cases be
interval on a given material.
reversible,thatis,recoveryofthedielectricstrengthmayoccur
12.2.3 Method C, Slow Rate-of-Rise Test—Apply voltage to
the test electrodes, from the starting voltage and at the rate if the specimen is allowed to cool to its original test tempera-
shown in Fig. 3 until breakdown occurs. ture before reapplying voltage. The voltage source must trip
12.2.3.1 Selecttheinitialvoltagefromshort-timetestsmade rapidlyatrelativelylowcurrentforthistypeoffailuretooccur.
as specified in 12.2.1. The initial voltage shall be reached as 12.3.2 Tripping of the voltage source may occur due to
specified in 12.2.2.3.
flashover, to partial discharge current, to reactive current in a
12.2.3.2 Use the rate-of-voltage rise from the initial value
highcapacitancespecimen,ortomalfunctioningofthebreaker.
specified in the document calling for this test method. Ordi-
Such interruptions of the test do not constitute breakdown
narily the rate is selected to approximate the average rate for a
(except for flashover tests) and should not be considered as a
step-by-step test.
satisfactory test.
12.2.3.3 Ifmorethanonespecimenofagroupofspecimens
12.3.3 If the breaker is set for too high a current, or if the
breaks down in less than 120 s, reduce either the initial voltage
breaker malfunctions, excessive burning of the specimen will
or the rate-of-rise, or both.
occur.
12.2.3.4 Ifmorethanonespecimenofagroupofspecimens
breaks down at less than 1.5 times the initial voltage, reduce 12.4 Number of Tests—Make five breakdowns unless oth-
the initial value. If breakdown repeatedly occurs at a value erwise specified for the particular material.

D 149 – 97a (2004)
13. Calculation 15. Precision and Bias
13.1 CalculateforeachtestthedielectricstrengthinkV/mm 15.1 The results of an interlaboratory study with four
or V/mil at breakdown, and for step-by-step tests, the gradient laboratories and eight materials are summarized in Table 2.
at the highest voltage step at which breakdown did not occur. This study made use of one electrode system and one test
8
13.2 Calculate the average dielectric strength and the stan- medium.
dard deviation, or other measure of variability. 15.2 Single-Operator Precision—Depending upon the vari-
ability of the material being tested, the specimen thickness,
14. Report
method of voltage application, and the extent to which tran-
14.1 Report the following information: sient voltage surges are controlled or suppressed, the coeffi-
14.1.1 Identification of the test sample. cientofvariation(standarddeviationdividedbythemean)may
14.1.2 For Each Specimen: varyfromalow1%toashighas20 %ormore.Whenmaking
14.1.2.1 Measured thickness, duplicate tests on five specimens from the same sample, the
14.1.2.2 Maximum voltage withstood (for step-by-step coefficient of variation usually is less than 9 %.
tests), 15.3 Multilaboratory Precision—The precision of tests
14.1.2.3 Dielectric breakdown voltage, made in different laboratories (or of tests made using different
14.1.2.4 Dielectric strength (for step-by-step tests), equipment in the same laboratory) is variable. Using identical
14.1.2.5 Dielectric breakdown strength, and
A
TABLE 2 Dielectric Strength Data Summary From Four Laboratories
Dielectric Strength (V/mil)
Thickness Standard Coefficient of
Material
(in. nom.) Deviation Variation (%)
mean max min
Polyethylene 0.001 4606 5330 4100 332 7.2
Terephthalate
Polyethylene 0.01 1558 1888 1169 196 12.6
Terephthalate
Fluorinated 0.003 3276 3769 2167 333 10.2
Ethylene
Propylene
Fluorinated 0.005 2530 3040 2140 231 9.1
Ethylene
Propylene
PETP fiber 0.025 956 1071 783 89 9.3
reinforced
epoxy resin
PETP fiber 0.060 583 643 494 46 7.9
reinforced
epoxy resin
Epoxy-Glass 0.065 567 635 489 43 7.6
Laminate
Crosslinked 0.044 861 948 729 48 5.6
Polyethylene
Average 8.7
A
Tests performed with specimens in oil using Type 2 electrodes (see Table 1).
14.1.2.6 Location of failure (center of electrode, edge, or types of equipment and controlling specimen preparation,
outside). electrodes and testing procedures closely, the single-operator
14.1.3 For Each Sample: precision is approachable. When making a direct comparison
14.1.3.1 Average dielectric withstand strength for step-by- ofresultsfromtwoormorelaboratories,evaluatetheprecision
step test specimens only, between the laboratories.
14.1.3.2 Average dielectric breakdown strength,
15.4 If the material under test, the specimen thickness, the
14.1.3.3 Indication of variability, preferably the standard
electrode configuration, or the surrounding medium differs
deviation and coefficient of variation,
from those listed in Table 1, or if the failure criterion of the
14.1.3.4 Description of test specimens,
current-sensing element of the test equipment is not closely
14.1.3.5 Conditioning and specimen preparation,
controlled, the precisions cited in 15.2 and 15.3 may not be
14.1.3.6 Ambient atmosphere temperature and relative hu-
realized. Standards which refer to this method should deter-
midity,
mineforthematerialwithwhichthatstandardisconcernedthe
14.1.3.7 Surrounding medium,
applicability of this precision statement to that particular
14.1.3.8 Test temperature,
material. Refer to 5.4-5.8 and 6.1.6.
14.1.3.9 Description of electrodes,
14.1.3.10 Method of voltage application,
14.1.3.11 If specified, the failure criterion of the current-
sensing element, and 8
The complete report is available from ASTM International. Request RR:D09-
14.1.3.12 Date of test. 1026.

D 149 – 97a (2004)
15.5 Use special techniques and equipment for materials 16. Keywords
having a thickness of 0.001 in. or less.The electrodes must not
16.1 breakdown; breakdown voltage; calibration; criteria of
damage the specimen upon contact. Accuray determine the
breakdown; dielectric breakdown voltage; dielectric failure;
voltage at breakdown.
dielectric strength; electrodes; flashover; power frequency;
15.6 Bias—This test method does not determine the intrin-
process-control testing; proof testing; quality-control testing;
sic dielectric strength. The test values are dependent upon
rapid rise; research testing; sampling; slow rate-of-rise; step-
specimen geometry, electrodes, and other variable factors, in
by-step; surrounding medium; voltage withstand
addition to the properties of the sample, so that it is not
possible to make a statement of bias.
APPENDIXES
(Nonmandatory Information)
X1. SIGNIFICANCE OF THE DIELECTRIC STRENGTH TEST
X1.1 Introduction directly between the electrodes. Weak spots within the volume
under stress sometimes determine the test results.
X1.1.1 A brief review of three postulated mechanisms of
breakdown, namely: (1) the discharge or corona mechanism,
X1.4 Influence of Test and Specimen Conditions
(2)thethermalmechanism,and(3)theintrinsicmechanism,as
well as a discussion of the principal factors affecting tests on
X1.4.1 Electrodes— In general, the breakdown voltage will
practical dielectrics, are given here to aid in interpreting the
tend to decrease with increasing electrode area, this area effect
data. The breakdown mechanisms usually operate in combina-
being more pronounced with thin test specimens. Test results
tionratherthansingly.Thefollowingdiscussionappliesonlyto
are also affected by the electrode geometry. Results may be
solid and semisolid materials.
affected also by the material from which the electrodes are
constructed, since the thermal and discharge mechanism may
X1.2 Postulated Mechanisms of Dielectric Breakdown
be influenced by the thermal conductivity and the work
X1.2.1 Breakdown Caused by Electrical Discharges—In function, respectively, of the electrode material. Generally
many tests on commercial materials, breakdown is caused by speaking, the effect of the electrode material is difficult to
electrical discharges, which produce high local fields. With
establish because of the scatter of experimental data.
solid materials the discharges usually occur in the surrounding
X1.4.2 Specimen Thickness—The dielectric strength of
medium, thus increasing the test area and producing failure at
solid commercial electrical insulating materials is greatly
or beyond the electrode edge. Discharges may occur in any
dependentuponthespecimenthickness.Experiencehasshown
internal voids or bubbles that are present or may develop.
that for solid and semi-solid materials, the dielectric strength
These may cause local erosion or chemical decomposition.
varies inversely as a fractional power of the specimen thick-
These processes may continue until a complete failure path is
ness, and there is a substantial amount of evidence that for
formed between the electrodes.
relatively homogeneous solids, the dielectric strength varies
X1.2.2 Thermal Breakdown—Cumulative heating develops
approximay as the reciprocal of the square root of the
inlocalpathswithinmanymaterialswhentheyaresubjectedto
thickness. In the case of solids that can be melted and poured
high electric field intensities, causing dielectric and ionic
to solidify between fixed electrodes, the effect of electrode
conduction losses which generate heat more rapidly than can
separationislessclearlydefined.Sincetheelectrodeseparation
be dissipated. Breakdown may then occur because of thermal
can be fixed at will in such cases, it is customary to perform
instability of the material.
dielectricstrengthtestsonliquidsandusuallyonfusiblesolids,
X1.2.3 Intrinsic Breakdown—If electric discharges or ther-
with electrodes having a standardized fixed spacing. Since the
mal instability do not cause failure, breakdown will still occur
when the field intensity becomes sufficient to accelerate elec- dielectric strength is so dependent upon thickness it is mean-
trons through the material. This critical field intensity is called ingless to report dielectric strength data for a material without
the intrinsic dielectric strength. It cannot be determined by this stating the thickness of the test specimens used.
test method, although the mechanism itself may be involved. X1.4.3 Temperature—The temperature of the test specimen
and its surrounding medium influence the dielectric strength,
X1.3 Nature of Electrical Insulating Materials although for most materials small variations of ambient tem-
X1.3.1 Solid commercial electrical insulating materials are perature may have a negligible effect. In general, the dielectric
generally nonhomogeneous and may contain dielectric defects strength will decrease with increasing temperatures, but the
of various kinds. Dielectric breakdown often occurs in an area extent to which this is true depends upon the material under
of the test specimen other than that where the field intensity is test. When it is known that a material will be required to
greatest and sometimes in an area remote from the material function at other than normal room temperature, it is essential

D 149 – 97a (2004)
that the dielectric strength-temperature relationship for the properties are usually such that edge breakdown will generally
material be determined over the range of expected operating occur if the electric strength, E , approaches the value given
s
temperatures. by:
X1.4.4 Time—Test results will be influenced by the rate of
4.2 63
E kV/mm (X1.4)
voltage application. In general, the breakdown voltage will s 5 Sts 1e8sD
tend to increase with increasing rate of voltage application.
In cases of large thickness of specimen and low permittivity
This is to be expected because the thermal breakdown mecha-
of specimen, the term containing t becomes relatively insig-
s
nismistime-dependentandthedischargemechanismisusually
nificant and the product of permittivity and electric strength is
time-dependent, although in some cases the latter mechanism 10
approximay a constant. Whitehead also mentions (p. 261)
may cause rapid failure by producing critically high local field
that the use of moist semiconducting oil can affect an appre-
intensitives.
ciablereductioninedgedischarges.Unlessthebreakdownpath
X1.4.5 Wave Form—In general, the dielectric strength is
between the electrodes is solely within the solid, results in one
influenced by the wave form of the applied voltage.Within the
medium cannot be compared with those in a different medium.
limitsspecifiedinthismethodtheinfluenceofwaveformisnot
It should also be noted that if the solid is porous or capable of
significant.
being permeated by the immersion medium, the breakdown
X1.4.6 Frequency—The dielectric strength is not signifi-
strength of the solid is directly affected by the electrical
cantly influenced by frequency variations within the range of
properties of immersion medium.
commercial power frequencies provided for in this method.
X1.4.8 Relative Humidity—The relative humidity influ-
However, inferences concerning dielectric strength behavior at
ences the dielectric strength to the extent that moisture ab-
other than commercial power frequencies (50 to 60 Hz) must
sorbed by, or on the surface of, the material under test affects
not be made from results obtained by this method.
the dielectric loss and surface conductivity. Hence, its impor-
X1.4.7 Surrounding Medium—Solid insulating materials
tance will depend to a large extent upon the nature of the
havingahighbreakdownvoltageareusuallytestedbyimmers-
material being tested. However, even materials that absorb
ing the test specimens in a liquid dielectric such as transformer
little or no moisture may be affected because of greatly
oil, silicone oil, or chlorofluorocarbons, in order to minimize
increased chemical effects of discharge in the presence of
theeffectsofsurfacedischargespriortobreakdown.Ithasbeen
9 moisture. Except in cases where the effect of exposure on
shownbyS.Whitehead thatinordertoavoiddischargesinthe
dielectric strength is being investigated, it is customary to
surrounding medium prior to reaching the breakdown voltage
control or limit the relative humidity effects by standard
of the solid test specimen, in alternating voltage tests it is
conditioning procedures.
necessary that
2 2 X1.5 Evaluation
E D 1 E D 1 (X1.1)
me8m = m 1 . se8s = s 1
X1.5.1 A fundamental requirement of the insulation in
If the liquid immersion medium is a low loss material, the electrical apparatus is that it withstand the voltage imposed on
criterion simplifies to it in service. Therefore there is a great need for a test to
evaluatetheperformanceofparticularmaterialsathighvoltage
2
E E D 1 (X1.2)
me8m . se8s = s 1 stress. The dielectric breakdown voltage test represents a
and if the liquid immersion medium is a semiconducting convenient preliminary test to determine whether a material
material the criterion becomes merits further consideration, but it falls short of a complete
evaluation in two important respects. First, the condition of a
E 2 f E (X1.3)
msm . p er e0 s
material as installed in apparatus is much different from its
condition in this test, particularly with regard to the configu-
where: ration of the electric field and the area of material exposed to
E = electric strength,
it, corona, mechanical stress, ambient medium, and association
f = frequency,
with other materials. Second, in service there are deteriorating
e and e8 = permittivity,
influences, heat, mechanical stress, corona and its products,
D = dissipation factor, and
contaminants, and so forth, which may reduce the breakdown
s = conductivity (S/m).
voltage far below its value as originally installed. Some of
Subscripts:
these effects can be incorporated in laboratory tests, and a
m refers to immersion medium,
better estimate of the material will result, but the final
r refers to relative,
consideration must always be that of the performance of the
0 refers to free space,
-12 material in actual service.
(e0 =8.854310 F/m) and
X1.5.2 The dielectric breakdown test may be used as a
s refers to solid dielectric.
material inspection or quality control test, as a means of
X1.4.7.1 Whitehead points out that it is therefore desirable
to increase E and ,or , if surface discharges are to be
m em sm
avoided. Transformer oil is usually specified and its dielectric 10
Starr, R. W., “Dielectric Materials Ionization Study” Interim Engineering,
Report No. 5, Index No ME-111273.Available from Naval Sea Systems Command
Technical Library, Code SEA 09B 312, National Center 3, Washington, DC
9
Whitehead, S., Dielectric Breakdown of Solids, Oxford University Press, 1951. 20362-5101.

D 149 – 97a (2004)
inferring other conditions such as variability, or to indicate the test it is the relative value of the breakdown voltage that is
deteriorating processes such as thermal aging. In these uses of important rather than the absolute value.
X2. STANDARDS REFERRING TO TEST METHOD D149
X2.1 Introduction X2.1.2 In some standards which specify that the dielectric
strength or the breakdown voltage is to be determined in
X2.1.1 The listing of documents in this appendix provides
reference to a broad range ofASTM standards concerned with accordance with Test Method D 149, the manner in which the
determination of dielectric strength at power frequencies or reference is made to this test method is not compley in
with elements of test equipment or elements of procedural conformance with the requirements of 5.5. Do not use another
details used to determine this property. While every effort has document, including those listed in this appendix, as a model
been made to include as many as possible of the standards forreferencetothistestmethodunlessthereisconformitywith
referring to Test Method D 149, the list may not be complete, 5.5.
and standards written or revised after publication of this
appendix are not included.

華洋試驗機產品網:http://www.huayangyq.com

 

華洋儀器展覽網:http://www.huayangyq.net

 

華洋儀器化工網:http://www.sifu4.com

 

華洋儀器百業網:http://www.jlhyyq.cn

 

 

久久久久精品国产亚洲| 9热精品视频在线观看| 青青草在线免费视频网站| 少妇高潮一区二区三区四| 久久久久国产精品福利| 亚洲午夜极品美女写真| 国产裸体视频免费无遮挡| 男女视频在线观看午夜| 不卡的av在线观看网站| 欧美一区二区三区喷汁尤物| 欧美日韩一级成人在线| 亚洲成人性色一区二区| 综合色视频不卡一区二区| 日韩三级黄色在线观看| 国产精品视频播放免费| 日日久久一区二区三区| 亚洲欧美日韩综合经典| 人妻熟女视频在线观看| 一区二区在线观看国产| 青草亚洲视频在线观看| 亚洲精品视频人妻系列| 中文一区二区高清不卡专区| 国产又粗又长又黄视频| 日本人妻熟女中文字幕| 大香蕉大香蕉在线视频| 18禁av免费观看网站| 久久欧美一区二区三区| 污污污网站在线观看视频| 国产成人在线观看不卡一区| 欧美精品福利综合视频| 东北大屁股熟女嗷嗷叫| 精品成人在线观看视频日韩| 宅男视频在线观看视频| 最新国产精品不卡在线| 中文字幕国产精品人妻| 视频国产一区二区三区| 人人妻人人澡人人爽久| 亚洲精品成人综合在线| 青草神马视频在线网址| 亚洲美女精品视频久久久| 老熟女原味一区二区三区| 欧美激情亚洲综合在线| 亚洲精品国产美女久久久| 日韩中文字幕黄色短片| 亚洲一区在线免费播放| 在线视频观看人妻中文| 中文字幕三级在线看午夜| 欧美最新一区二区三区| 国产综合国产精品久久久| 青青草av在线免费观看| 国产精品亚洲精品爽爽| 日韩久久人妻一区二区三区 | 久久久亚洲熟妇熟女毛片| 精品国产一区二区三区在线| 天天干天天干天天干天天色| 中文字幕二区三区亚洲| 日日久久一区二区三区| 国产午夜精品视频一区二区| 变态调教一区二区三区| 无吗人妻一区二区三区在线| 日韩精品人妻久久久久久| 人妻熟女中文字幕第一页| 光棍午夜福利在线观看| 国产精品女人久久久久| 男女国产一级啪啪视频| 午夜精品日韩在线播放| 人妻熟女中文字幕第一页| 粉嫩高潮美女一区二区三| 久久国产亚洲欧美精品| 国产老熟女高潮精品网站| 最新在线免费中文字幕| 中文字幕有码日韩精品| 精品成人在线观看视频日韩| 绯色av蜜臀一区二区| 尤物视频在线免费观看| 男女黄网站色大片免费看| 婷婷午夜精品一区二区| 久久激情深爱网av蜜臀| 国产精品视频观看大全| 激情五月综合丁香亚洲| 黑丝制服一区二区三区| 青草视频在线视频在线| 国产精品极品美女自在线| 91人妻久久久久久综合| 午夜国产精品理论片一区| 中文字幕专区一区二区| 天天爽天天狠久久综合| 久久久亚洲精品久久久| 日韩美在线观看视频黄| 男女后入视频在线观看| 亚洲国产一区二区精品专区| 久久夜色国产精品噜噜av| 亚洲人妻中文字幕色站| 男女视频在线观看午夜| 久久婷婷狠狠综合激情| 羞羞尤物视频在线观看| 国产福利在线观看欧美| 婷婷视频免费在线播放| 天天爽夜夜爽人人爽曰| 久久久久精品久久九九| 中文字幕国产精品人妻| 欧美精品国产成人综合亚洲| 桃色午夜一区二区三区| 中文字幕有码综合色亚洲| 爽人人妻人人爽人人爽| 夜夜躁日日躁狠狠久久| 好紧好爽好舒服的视频| 亚洲国产精品欧美一级| 五月婷婷六月亚洲综合| 亚洲午夜精品久久久久人妖| 日韩性生活黄色一级片| 欧美日韩不卡码一区二区| 人妻禁断一区二区三区| 天天摸天天操天天高潮| 天堂va视频在线观看| 欧美精品人妻在线播放| 不卡的av在线观看网站| 国产三区美女在线观看| 男女后入视频在线观看| 中文字幕免费中文字幕| 日本在线一区中文字幕| 丝袜人妻社长室中文字幕| 日韩在线欧美一区二区三区| 母乳中出一区二区三区| 日韩美女黄色高清视频| 日本东京热吉良铃视频| 男女后入视频在线观看| 亚洲日产一区二区三区| 亚洲无一区二区三区在线| 午夜美女福利视频久久| 中文字幕中日韩欧美一区| 欧美日韩色精品人妻在线视频 | 韩国有码一区二区三区| 久久精品免费福利网站| 亚洲天堂久久在香蕉狠狠| 欧美一区二区三区桃花| 999久久久亚洲天堂| 不卡一区二区三在线视频| 日韩精品三级黄色人妻| 亚洲国产av午夜精品| 天天干夜夜操激情黄色| 国产夫妻在线观看福利| 欧美顶级一区二区三区| 日韩黄片高清在线观看| 不卡在线视频一区二区| 日韩高清网站在线观看| 亚洲女同恋中文一区二区| 国产裸体视频免费观看| 超碰91成人在线观看| 操你啦青青操在线视频| 超碰91成人在线观看| 日韩欧美有码中文字幕| 日韩一区二区三区三级| 日韩午夜福利在线入口| 在线观看的网站日韩精品| 欧美熟女丝袜一区二区| 欧美日韩在线看第一页| 人妻熟女视频在线观看| 欧美国产日韩在线一区二区 | 人妻出轨中出内射在线| 在线视频情侣国产身材| 日韩美女午夜在线视频| 亚洲一区二区欧美另类| 精品久久久精品久久久久| 欧美中文字幕人妻在线| 青青草小视频在线播放| 欧美激情久久五月天色| 日本熟妇孕妇孕交视频| 国产一区二区三区线观看| 精品人妻中文字幕播放| 一区二区三区丝袜制服| 一区二区三区在线视频日本| 日韩av不卡在线观看一区| 一区二区福利在线视频| 在线观看国产美女网站| 精品人妻中文字幕播放| 青青草手机在线观看视频在线| 国产一区二区三区精品免费在线 | 亚洲中文字幕一区视频| 五月天 一区二区三区| 国产黄片一区二区在线| 国产又大又长又粗免费| 国产极品美女视频福利| 韩宝贝福利视频在线观看| 亚洲欧美色网一区二区| 动漫操人视频在线观看| 亚洲国产精品色一区二区| 欧美日韩激情在线一区二区| 外国美女激情午夜在线| 亚洲国产成人精品女人久| 高潮激情肉欲视频在线| 日韩欧美一卡二卡在线| 午夜美女福利视频久久| 婷婷啪啪激情五月天基地| 国产欧美另类久久久久| 欧美国产日韩男人的天堂| 中文字幕av一二三四区| 午夜免费啪在线观看视频| 欧美亚洲一区二区久久| 欧美激情国产精品系列| 欧美丰满老熟妇bbb| 丝袜人妻精品一区在线| 丰满老妇一区二区三区| 日韩av激情在线观看| 国产一区二区三区精品免费在线| 午夜精品久久久久毛片| 久草视频在线手机观看| 日本在线一区中文字幕| 亚洲欧美日韩综合经典| 国产精品久久久久久妇女| 青青草国产福利一区二区| 国产片在线一区二区三区| 青青操视频免费播放器| 黄片免费在线视频播放| 欧美成人午夜在线视频| 国产美女在线免费观看| 国产一级在线视频播放| 日韩欧美在线播放一区二区| 69视频一区二区三区| 欧美日韩在线卡一卡二| 亚洲精品自拍偷拍av| 国产极品美女在线网站| 在线播放1区2区3区| 亚洲免费视频一二三区| 久久99精品一区二区三区| 91成人国产短视频在线| 亚洲欧美激情综合在线| av黄网在线观看高清| 69精品久久久久久久| 国产日韩精品欧美一区色| 久草免费在线公开视频| 久久99精品一区二区三区| 人妻少妇精品激情在线| 欧美国产日韩男人的天堂| 精品呦呦视频在线观看| 欧美码中文精品中文字幕| 男人的天堂网站免费观看| 欧美人妻在线视频网站| 性感美女国产精品传媒一区二区| 亚洲国产成人精品女人久| 国产精品久久综合激情| 中文字幕在线播放一区二区不卡| 大胆欧美视频一区二区| 日韩一区二区三区水蜜桃| 日韩精品三级黄色人妻| 免费成人欧美一区二区| 日本新视频一区二区三区| 亚洲美女视频永久网址| 欧美熟妇另类久久久久| 99青草视频在线观看| 天天爽夜夜爽人人爽曰| 亚洲精品一区二区三区小| 国产乱码一区二区三区的| 色国产在线视频一区二区| 中文字幕亚洲欧美专区| 国内外激情免费视频网| 在线视频一区二区精品| 熟女国产一区二三区熟女| 欧美在线不卡激情二区| 在线人成视频播放亚洲| 亚洲午夜极品美女写真| 播放国产免费一级黄片| 青青草手机在线观看视频在线| 中文字幕欧美在线人妻| 麻豆精品一区二区av白丝在线| 国产一区二区成人精品| 欧美亚洲国产人成人精品| 青青青青草国产精品视频| 成人v精品蜜桃久久一区| 久久久久久激情欧美国产| 蜜桃在线免费观看视频| 日韩黄片高清在线观看| 人人都爱看大香蕉操片| 亚洲精品国产美女久久久| 亚洲av综合色区一区二区偷拍| 精品人妻少妇一区二区三区| 成人蜜桃视频在线观看| 国产一区二区三区免费观看在线| 五月天 一区二区三区| 在线观看亚洲区一区二区| 国产一级在线视频播放| 99精品视频一区二区三区| 欧美激情干逼视频超爽| 午夜视频在线免费观看视频| 亚洲一区二区少妇系列| 青青草久久这里只有精品| 中文字幕国产精品人妻| 中文字幕免费中文字幕| 国产av无线高清在码线| 日韩性欲视频在线观看| 不卡在线视频一区二区| 青青草这里只有精品久久| 精品乱码无人区一区二区| 免费在线观看不卡av网| 最新中文字幕人妻伊人网| 不卡的成人av在线播放| 尤物视频免费观看网站| 国产精品一精品二精品三| 亚洲伊人久久综合蜜桃| 国产一区美女在线观看| 国内自拍黄片在线观影| 亚洲欧美中文日韩视频二区| 熟女av俱乐部久久久久| 精品人妻系列在线观看| 久久9999精品视频| 欧美激情亚洲综合在线| 在线免费播放中文字幕| 欧美亚洲偷拍一区二区| 一区二区三区四区不卡网| 国产香蕉一区二区三区| 99久久久久久国产精品| 日韩精品人妻久久久久久| 国产成人在线观看不卡一区| 激情五月激情综合av| 国产精品午夜福利小视频| 欧美人体一区二区三区| 熟女人妇熟妇视频系列| 色婷婷一区二区蜜桃视频| 夜夜躁日日躁狠狠久久| 中文字幕乱码熟女第一区| 色悠悠综合在线资源网站| 日本岛国一区二区三区| 欧美在线免费激情视频| 午夜欧美福利视频一区| 成人午夜在线免费播放| 大陆亚洲国产欧美一区| 日韩不卡一区不卡二区| 亚洲中文字幕乱码精品区| 92欧美一区二区三区| 精品呦呦视频在线观看| 在线中文字幕欧美日韩| 免费av中文字幕在线| 青青草一个释放的网站| 成人午夜在线免费播放| 中文字幕人妻熟妇伦伦| 欧美一区二区三区在线看| 爽人人妻人人爽人人爽| 男人天堂av在线免费播放| 日韩啪啪啪小视频免费| 亚洲欧美中日韩中文字幕| 另类激情一区二区三区 | 女人裸体视频免费网站| 欧美日韩高清在线一区| 又大又黄又粗的国产视频| 日韩中文一区二区三区精品| 亚洲欧美精品成人久久曰| 欧美午夜一区二区三区四区| 最新黄色在线免费网站| 色婷婷的在线观看视频| 日韩午夜在线视频观看| 国产一区二区三区在线观看午夜| 激情五月天在线播放视频| 麻豆成人在线免费观看视频| 最近日韩视频在线观看| 国产精品极品美女自在线| 国产午夜精品视频一区二区| 青草成人在线观看视频| 可以在线看黄色的网站| 亚洲二区在线播放视频| 人妻自拍视频一区二区三区| 伊人久久狠狠亚洲超碰| 日本视频一区二区黄色的| 天天爱天天做久久狠狠| 欧美激情亚洲综合在线| 一区二区三区蜜桃视频| 在线免费的特级黄片欧美| 日本女性裸乳性生活黄色| 黑丝制服一区二区三区| 蜜桃臀av永久免费看片| 97精品一区二区三区| 国产裸体视频免费无遮挡| 亚洲一区二区在线在线| 欧美蜜臀一区二区三区四区| 美女在线免费观看国产| 亚洲熟女中文字幕中出| 亚洲欧美精品一区在线看| 欧美成年午夜免费全部| 欧美一区两区三区久久| 极品人妻一区中文字幕| 欧美一区二区三区被x| 尤物精品视频在线播放| 亚洲午夜精品久久久久人妖| 人妻日韩丰满一区二区| 一区二区三区日韩高清| 人妻免费视频观看一区二区三区 | 播放日本一级特黄大片| 久草精品免费在线观看| 亚洲另类色区欧美日韩| 亚洲中文字幕乱码精品区| 国产伦理一区在线观看| 欧美一区二区三区被x| 色国产在线视频一区二区| 国产老夫妻免费在线精品| 女人裸体视频免费网站| 日韩av一区二区国产| 夜夜躁狠狠躁日日躁一区 | 热久久日韩中文字幕av| 亚洲欧美色网一区二区| 丁香婷婷色综合激情五月| 精品中文字幕久久久久久| 99精品视频一区二区三区| 高清视频中文字幕亚洲| 国产精品视频观看大全| 胖妇一级视频一级黄色| 亚洲国产av午夜精品| 午夜精品福利在线观看国产| 欧美精品一区二区在线看| 亚洲精品一区二区三区99| 韩国有码一区二区三区| 日韩欧美在线观看免费| 亚洲成人一区二区免费| 国产av日韩一区二区| 欧美激情婷婷综合五月天| 男女视频免费观看国产区| 久久这里只有精品官网| 亚洲国产av午夜精品| 亚洲国产av午夜精品| 中文字幕乱码熟女第一区| 日韩高清不卡一区二区| 日本新视频一区二区三区| 亚洲欧美一区二区免费| 国产一区二区丝袜在线| av高清一区在线观看| 免费国产精品黄色一区二区| 日本特黄免费在线观看| 精品少妇一区二区三区两| 日韩乱妇乱女熟女av| 91色婷婷视频在线观看| 成人蜜桃在线观看视频| 五月综合婷婷久久综合网| 午夜精品区一区二区三| 超碰91成人在线观看| 一区二区三区伦理视频| 一本大道大香蕉一区二区| 一区二区三区资源在线| 日本东京热吉良铃视频| 人妻禁断一区二区三区| 亚洲免费香蕉视频一区二区| 性激烈欧美日韩中文字幕| 日本黄色三级在线观看| 撸撸免费成人手机视频网| 国产美女在线观看网站| 色婷婷开心五月之丁香| 亚洲国产av午夜精品| 在线视频观看人妻中文| 欧美一二三区高清视频| 人妻少妇久久中文字幕| 男女在线观看一区视频| 99国产精品免费人妻| 大奶在线一区二区三区| 久久青草综合激情五月天| 成人欧美午夜高清大片| 久久久国产精品中文字幕| 人妻自拍视频一区二区三区| 亚洲av少妇一区二区| 亚洲精品一区二区三区小| 熟女视频一区二区三区| 黄色激情小说婷婷六月天| 可以在线看黄色的网站| 免费黄色片一区二区三区| 久久这里只有精品毛片| 欧美日韩一级作a一区二区| 成人欧美午夜高清大片| av中文字幕一二三四区| 中文字幕精品日韩综合| 激情欧美一区二区三区| 国产乱码久久久久久一区二| 国产极品美女在线观看| 欧美激情亚洲综合在线| 黄片欧美一区二区在线观看 | 国产日韩欧美产一区二区| 在线中文字幕日韩有码| 在线免费的特级黄片欧美| 激情五月天综合婷婷婷| 成人涩涩涩色在线观看视频| 亚洲精品国产成人精品| 亚洲一区二区三区午夜| 麻豆成人在线免费观看视频| 男女午夜激情视频免费看| 熟女乱一区二区三区在线| 人人妻人人澡人人精品| 欧美人与牲禽动交精品| 在线观看免费国产精品| 日韩精品一区二区三区蜜臀 | 亚洲一区亚洲二区人妻| 成人精品小视频在线观看| 日韩美女后入式在线视频| 大香蕉大香蕉在线视频| 岛国成人中文字幕组观看| 久久综合九色综合久桃花| 一区二区三区制服精品| 国产乱对白刺激视频不卡| 一区二区三区在线视频日本| 大屁股熟女一区二区三区| 在线观看国产美女网站| 欧美人与牲禽动交精品| 亚洲欧美一区二区三四区| 蜜桃一区二区三区在线观看| 青青草视频在线免费视频| 国产精品极品美女自在线| 可以看黄的福利视频网站| 性激烈欧美日韩中文字幕| 免费观看女人裸体视频| 裸体女医生性服务视频| 欧美日韩国产福利精品| 国产成人在线观看不卡一区| 国产乱码久久久久久一区二| av久久久一区二区三区| 私人尤物视频在线观看| 国产伦视频一区二区三区| 女人裸体视频免费网站| 欧美亚洲偷拍一区二区| 一区二区亚洲精品在线| 精品久久久久久中文字幕| 国产又粗又深又猛又爽| 熟女人妻一区二区在线| 久久久久国产精品麻豆| 男女激情视频网站免费| 蜜桃视频在线观看国产| 中文字幕第一区免费在线| 日韩黄色三级在线观看| 在线欧美一区二区三区| 高清一区二区三区四区五区| 国产一区二区三区少奶| 中文字幕有码最近熟女| 激情欧美一区二区三区| 草草视频在线一区二区| 天天爱天天做久久狠狠| 爆操美女在线观看视频| 新人妻一区二区在线视频| 97人妻超碰中文字幕| 国产男女免费视频网站| 韩国国产一区二区三区| 婷婷一区二区中文字幕| 欧美一本在线中文字幕| 久久久国产精品一二三区| 少妇高潮激情一区二区| 久久久久亚洲av麻豆精品| 欧美国产日韩男人的天堂| 男女一区二区视频免费在线观看| 日韩午夜在线视频观看| 一区二区三区女大学生| 欧美一区两区三区久久| 涩涩高清在线观看一区二区| 美女在线免费观看国产| 亚洲午夜极品美女写真| 亚洲国产av午夜精品| 国产精品自拍一级二级| 免费女初学生裸体视频| 伦理在线观看国产第一| 大香蕉大香蕉综合伊人| 国产又长又粗又爽的视频| 骚骚日韩精品中文字幕| 亚洲欧洲日本韩国精品| 人妻出轨中出内射在线| 制服在线一区二区三区| 女厕自拍偷拍一区二区| 欧美一二三区高清视频| 999久久久亚洲天堂| 日韩美女福利视频大全| 欧美一区二区三区桃花| 最新偷拍一区二区三区| 中文字幕视频日韩欧美| 欧美日韩色精品人妻在线视频| 色综合天天综合网免费| 青青草在线免费视频网站| 青青草这里只有精品久久| 亚洲一区二区欧美另类| 啊好紧好爽好舒服视频| 亚洲综合国产成人丁香五| 97人妻人人揉人人澡原| 人妻少妇中文字幕久久| 欧美日韩高清在线一区| 久青青视频精品免费观看| 青青成人在线中文字幕| 欧美激情干逼视频超爽| 成人午夜免费观看视频| 成人午夜做爰高潮片免费| 欧美激情综合久久久久| 国产激情片一区二区三区| 97操碰视频在线观看| 尤物视频在线免费观看| 亚洲一区二区国产精品久久| 青青草在线免费视频网站| 精品国产av色一区二| 夜夜躁狠狠躁日日躁一区| 久久中文字幕人妻淑女| 亚洲国产一区二区精品专区| 日本人三级黄色爱爱视频| 人人都爱看大香蕉操片| 精品国产网站免费观看| 亚洲无一区二区三区在线| 97人干人人插人人看| 久久久人妻蜜桃可以下载| 日韩欧美中文字幕系列| 最近最新中文字幕亚洲| 蜜桃一区二区三区在线观看| 99久久久久久国产精品| 午夜精品一区福利久久| 最新亚洲伦理一区二区| 日本人三级黄色爱爱视频| 日本福利小视频在线观看| 大尺度激情视频日韩网站| 精品乱码无人区一区二区| 国产精品视频美女网站| 蜜桃在线免费观看视频| av成人教育在线播放| 欧美黄色免费在线播放| 成人午夜大香蕉人妻少妇| 久久久久精品国产亚洲| 亚洲第一黄色日韩欧美| 国产美女在线免费观看| 成人v精品蜜桃久久一区| 日日久久一区二区三区| 国产裸体视频免费观看| 日韩av在线看中文字幕| 中文字幕色偷偷人妻久久| 宅男视频在线观看视频| 国产激情男女免费视频| 中文字幕一区三区三区| 伊人久久一区二区三区导航| av日韩在线中文字幕| 日韩欧美亚洲中文字幕一区| 日韩av不卡在线观看一区| 大香蕉大香蕉在线视频| 午夜福利视频免费黄| 美女一抽一插啪啪试看| 大胆欧美视频一区二区| 亚洲成人午夜福利综合网| 国产精品五月婷在线观看| 羞羞尤物视频在线观看| 好大好爽好硬日本视频| 欧美人体一区二区三区| av中文字幕一二三四区| 日韩欧美美女视频在线| 老司机久久一区二区三区| 中文字幕视频免费播放| 日韩视频一区二区三区| 一区二区福利在线视频| 亚洲中出在线视频播放| 亚洲国产精品99久久久| 首页欧美日韩中文字幕| 美女被插一区二区三区| 久久夜色国产精品噜噜av| 久久久久亚洲av麻豆精品| 天天干天天插免费视频| 亚洲欧美成人综合图区| 国产一区二区在线蜜臀| 亚洲天堂成人av在线看| 久久青草综合激情五月天| 日韩黄色一级片中文字幕| 欧美激情干逼视频超爽| 五月婷婷六月亚洲综合| 欧美一区二区三区啪啪啪| 精品老熟女一区二区三区| 蜜桃在线免费观看视频| 久草网视频在线观看高清| 韩国精品视频一区二区| 久久天天操天天日天天| 欧美一区两区三区久久| 精品一区二区三区人妻系列| 欧美日韩国产福利精品| 亚洲国产精品自在久久| 人妻伦乱视频一区二区| 在线欧美一区二区三区| 好看的日本中文字幕视频| 亚洲网爆日韩中文字幕| 亚洲黄色片一区二区三区| 亚洲熟妇av无人区一区| 91人妻久久久久久综合| 国产日韩精品欧美一区色| 蜜桃视频在线播放网站| 亚洲国产成人精品女人久| 亚洲国产精品色一区二区| 欧美人与性动交欧美精品| 国产精品自拍午夜小视频| 超碰91成人在线观看| 日本亚洲最新免费一区| 黄色日本网站地址观看| 尤物精品视频在线播放| 精品人妻系列在线观看| 午夜在线播放免费人成年| 午夜福利视频免费黄| 欧美激情视频在线网站| 日韩美女午夜免费视频| 色婷婷成人免费视频网站| 天码人妻久久一区区三区免费人妻 | 大屁股熟女一区二区三区| 国产精品久久久久久亚洲毛片| 在线国产日韩欧美首页| 日韩黄色三级在线观看| 里崎爱佳av中文字幕| 中文字幕有码最近熟女| 黄片一区二区三区免费看| 人妻一区二区三区视频| 中文字幕av中文不卡| 欧美精品亚洲午夜一区| 成人在色线视频在线观看| 日韩一区二区三区三级| 激情视频免费在线观看| 欧美寂寞少妇在线观看| 十八禁看网站在线观看| 本庄优花人妻中文丝袜| 日韩久久人妻一区二区三区| 日韩区二区三区中文字幕| 欧美福利视频在线播放| 国产高清夫妻碰一区二区| 日韩大胆人体视频一二区| 日日干夜夜爽天天舔天天插| 香蕉精品在线一区二区三区 | 国产乱码一区二区三区三州| 中日韩中文字幕一区二| 久久中文字幕人妻淑女| 日韩欧美美女视频在线| 精品人妻们的在线视频| 成人午夜在线观看不卡| 日韩黄色一级片中文字幕| 一区二区不卡免费视频| 宅男视频在线观看视频| 成人国产一区二区在线看| 午夜激情视频在线免费看| 国产又爽又黄又紧又粗| 激情五月综合丁香亚洲| 欧美精品在欧美一区一女| 亚洲精品视频人妻系列| 日本亚洲一区二区三区在线播放| 国产伦视频一区二区三区| 中文字幕视频免费播放| 日韩黄片高清在线观看| 国产精品四区免费观看| 亚洲精品一区二区三区99| 午夜在线精品偷拍一区二| 日韩有码中文字幕欧美| 午夜精品区一区二区三| 日本视频在线一区二区三区| 激情五月天综合婷婷婷| 在线观看视频区二区三区| 日本福利片国产午夜久久| 欧美亚洲国产人成人精品| 精品午夜福利短视频一区 | 青草成人在线观看视频| 国产丝袜区一区二区三| 亚洲免费在线视频播放| 日韩精品中文字幕av在线| 欧美精品大屁股一区二区| 亚洲一区二区三区午夜| 欧美日韩一区国产二区| 国产亚洲精品自在久久| 久久亚洲中文字幕精品熟| 欧洲成人一区二区精视频| 性感一区二区三区在线| 一区二区三区伦理视频| 午夜精品久久久久毛片| 久草免费在线公开视频| 国产欧美日韩综合一区| 久久亚洲中文字幕精品熟| 老熟女伦一区二区三区老熟 | 欧美激情亚洲综合在线| 日韩美女hd高清视频| 日韩美女三区免费视频| 中文字幕有码最近熟女| 一区二区三区四区不卡网| 天天干夜夜操激情黄色| 午夜精品久久久内射视频| 国产一区二区不卡老阿姨| 婷婷婷婷一区二区三区| 国产精品美女制服诱惑| 99国产精品免费人妻| 老熟女伦一区二区三区老熟 | av高清一区在线观看| 亚洲无一区二区三区在线| 久久国产亚洲欧美精品| 亚洲网爆日韩中文字幕| 亚洲欧美综合区丁香六月| 女人正面裸体洗澡视频| 日韩性欲视频在线观看| 成人午夜在线免费播放| 男女在线观看免费视频| 欧美日韩国产精品自拍| 亚洲中文字幕在线四区| 久久久久黄片久久毛片| 青青操视频免费播放器| 北条麻妃在线中文字幕| 午夜在线精品偷拍一区二| 91精品国产一区二区三区在线| 首页欧美日韩中文字幕| 色婷婷av综合全线在线| 大胆欧美视频一区二区| 亚洲欧美国产福利一区| 国产成人综合亚洲绿色| 蜜桃一区二区三区在线观看| 免费观看成人激情视频| 91精品一区二区三区久久| 美女三级国产在线观看| 国产欧美精品一二三四区| 亚洲免费在线视频播放| 日韩美女视频一区二区| 国内视频一二三区视频| 九一一区二区三区四区五区| 日韩视频免费中文字幕| 激情视频在线观看欧美| 亚洲精品国产美女久久久| 日韩av激情在线观看| 国产精品一区二区在线| 超在线中文有码观看视频| 欧美一区二区三区喷汁尤物| 国产精品美女福利在线| 超级一级黄色录像带福利| 中文字幕国产精品人妻| 天天干天天插免费视频| 亚洲二区高清视频在线观看| 人妻禁断一区二区三区| 亚洲成人午夜福利综合网| 日韩美中文字幕视频在线| 日本亚洲一区二区三级| 精品日韩在线视频网站| 桃色午夜一区二区三区| 欧美一欧美二欧美三精品| 亚洲欧美日韩成人试频| 国产高清夫妻碰一区二区| 国产精品久久国产三级国| 亚洲精品国产美女久久久| 私人尤物视频在线观看| 免费观看成人激情视频| 国产又粗又长又猛又黄| 在线一区三区精品视频| 日产国产精品亚洲高清| 久操在线视频免费观看| 一区二区三区女大学生| 操美女的视频在线观看| 成人在线观看亚洲天堂| 欧美日韩国产福利精品| 91精品国产一区二区三区在线| 久久国产精品美女久久久| 日韩区二区三区中文字幕| 好大好爽好硬日本视频| 伊人久久一区二区三区导航| 黄片免费在线视频播放| 国产夫妻在线观看福利| av免费在线观看不卡的| 欧美日本亚洲在线观看| 日本老熟女一区二区三区| 国产老熟女高潮精品网站| 中文字幕欧美在线人妻| 在线亚洲欧美日韩另类| 欧美激烈一区二区三区| 成人在色线视频在线观看| 欧美黑人巨大精品一区二区| 婷婷一区二区中文字幕| 国产一区二区三区尤物| 一区二区三区欧美在线免费| 国产香蕉一区二区三区| 久草免费在线公开视频| 国产极品美女视频福利| 中文字幕好色爽视频综合网| 亚洲免费观看中文字幕| 日韩av一级二级中文字幕| 日本成年人一区二区三区视频| 男女视频在线观看午夜| 免费女初学生裸体视频| 亚洲一区二区三区午夜| 深夜福利动态图亚洲av| 日韩美在线观看视频黄| 69精品久久久久久久| 日本女性裸乳性生活黄色| 日韩美女午夜在线视频| 精品午夜福利短视频一区| 久久激情深爱网av蜜臀| 日本在线东京热在线观看| 色乱码一区二区三在线看| 蜜桃在线免费观看视频| 久久综合九色综合久桃花| 国产视频精品视频免费| 新狠狠的干欧美一区二区| 国产一区二区三区少奶| 最近日本中文字幕中文| 欧美蜜臀一区二区三区四区| 成人在色线视频在线观看| 99精品视频一区二区三区| 国产裸体视频免费观看| 亚洲中文字幕乱码精品区| 麻豆特殊视频免费观看| 亚洲成人午夜福利综合网 | 五月婷婷六月亚洲综合| 日韩av在线一卡一带| 色综合激情综合久久综合| 欧洲一区二区三区黄色| 大香蕉一区二区三区四区| 日韩精品在线播放第三页| 欧美日韩一区在线免费| av黄网页在线观看网站| 偷拍女厕一区二区不卡| 青草亚洲视频在线观看| 蜜桃视频免费观看在线| 欧洲无套内射一区二区| 色六月婷婷亚洲婷婷六月| 熟女如虎的丰满熟妇啪啪| 免费在线观看不卡av网| 韩宝贝福利视频在线观看| 99久久精品毛片免费| 免费黄色日本网站观看| 亚洲美女在线国产精品| 一区二区在线观看国产| 亚洲视频在线播放人成| 国产一区二区在线蜜臀| 精品人妻少妇一区二区三区| 人妻免费视频观看一区二区三区| 欧美激情视频在线网址| 亚洲av午夜男人的天堂| 精品性高潮久久久久久久| 丁香婷婷色综合激情五月| 欧美一二三区高清视频| 久久青草综合激情五月天| 成人免费播放一区二区三区| 在线日韩欧美一区二区三区| 欧美一区两区三区久久| 亚洲狠狠狠一区二区三区| 精品一区二区三区视频| 免费在线视频欧美激情| 超在线中文有码观看视频| 高清一区二区三区四区五区| 男女视频免费观看国产区| 青草在线视频观看免费| 日韩一级特黄大片特爽| 成人国产一区二区在线看| 国产又粗又猛又爽的视频在线观看 | 国产伦理一区在线观看| 欧美激情国产精品系列| 岛国成人中文字幕组观看| 日韩精品做过视频在线| 91免费在线一区二区三区| 亚洲成人性色一区二区| 在线视频观看人妻中文| 高潮激情肉欲视频在线| 亚洲国产天堂久久久久久| 亚洲国一区二区三区不卡韩| 日本一区中文字幕在线播放| 在线一区三区精品视频| 岛国成人中文字幕组观看| 国产激情男女免费视频| 中文字幕日韩一二三区| 中文字幕日韩不卡久久| 人妻伦乱视频一区二区| 国产男男做爰免费视频| 蜜桃视频在线播放网站| 免费看国产日韩欧美黄片| 在线观看的网站日韩精品| 亚洲不卡中文字幕资源网| 国产中文亚洲熟女日韩| 久久婷婷狠狠综合激情| 欧美成人禁区大片一区| 青青草大香蕉伊人视频| 老司机久久一区二区三区| 麻豆一区在线观看视频| 精品人妻少妇一区二区三区| 亚洲丝袜在线中文字幕| 日本熟妇孕妇孕交视频| 亚洲中文字幕一区视频| 人妻人人妻人人人人妻| 国产91肉丝在线观看播放| 免费在线视频欧美激情| 日韩性生活视频播放| 午夜在线播放免费人成年| 美女黑丝床上啪啪啪国产| 在线免费观看日韩欧美| 日本视频一区二区黄色的| 国产又粗又长又爽又猛| 国产精品国三级国产av| 欧美日韩激情在线一区二区| 日本视频在线一区二区三区| 天天爽天天狠久久综合| 夜夜躁日日躁狠狠久久| 一区二区三区视频综合| 大尺度激情视频日韩网站| 久草精品免费在线观看| 中文字幕免费视频播放| 久久这里只有精品官网| 人妻伦乱视频一区二区| 欧美人妻在线视频网站| 美女被插一区二区三区| 国产又粗又黄又猛又爽| 卡通动漫综合一区二区| 国产一区内射最近更新| 东京热加勒比高清网址| 日韩av在线一卡一带| 99伊人中文字幕一区综合在线| 欧美精品午夜一区二区| 母乳中出一区二区三区| 经典三级中文字幕在线播放| 日本亚洲一区二区三级| 欧美日韩免费国产在线观看| 人妻熟女中文字幕第一页| 伊人免费在线中文字幕| av在线网站丝袜观看| 天天做天天爱天天爽天天舔| 欧美亚洲制服一区二区| 里崎爱佳av中文字幕| 中文字幕第一区免费在线| 丰满老妇一区二区三区| 精品日韩一区二区三区| 中文字幕有码日韩精品| 激情人妻另类人妻伦94| 欧美啪啪视频免费大全| 青草成人在线观看视频| 久草视频在线手机观看| 成人在色线视频在线观看| 岛国成人中文字幕组观看| 新中文字幕一区二区三区| 日本特黄一级在线观看| 免费观看成人激情视频| 久久久精品人妻在线视频| 中文字幕久久久人妻人区| 最新偷拍一区二区三区| 国语精品一区二区三区欧美| 久久精品国产亚洲av蜜色| 亚洲美女精品视频久久久| 午夜视频在线免费观看视频| 水蜜桃精品亚洲一区二区| 日本新视频一区二区三区| 在线精品一区二区不卡| 中文字幕乱码熟女第一区| 欧美日韩精品一区二区视频永久免| 欧美日韩高清国产精品| 国内自拍黄片在线观影| 日日干夜夜爽天天舔天天插| av成人教育在线播放| 色偷偷亚洲一区二区三区| 欧美日韩精品二区 三区| 小嫩美女直喷白浆在线| 久久国产天堂福利天堂| 亚洲欧洲自拍成人精品| 日本人妻与老头中文字幕| 午夜少妇饥渴难耐一区| 国产不卡视频一区二区| 国产欧美日韩综合一区| 天天干天天干天天干天天色| 首页欧美日韩中文字幕| 亚洲精品国产美女久久久| 欧美三级成人一区二区| 人人妻人人玩人人妻精品| 人妻少妇精品激情在线| 大香蕉免费av在线观看| 欧洲一区二区三区黄色| 北条麻妃在线中文字幕| 国产精品中文字幕一二三| 欧美日韩免费观看在线| 美女擦边一区二区三区| 97人妻人人揉人人澡人人爽国产 | 欧美码中文精品中文字幕| 日产国产精品亚洲高清| 免费国产老熟女免费视频| 美女后入式一区二区三区| 午夜亚洲福利在线观看的| 极品人妻一区中文字幕| 日韩欧美二区三区视频| 午夜老司机啪啪免费视频| 欧美午夜性刺激在线播放| 99久久久久久国产精品| 北条麻妃在线中文字幕| 午夜国产成人在线观看| 日韩欧美中文字幕系列| 最新国产情侣在线视频| 国产又粗又深又猛又爽| 日韩欧美在线播放一区二区| 征服丰满的大屁股熟妇| 日韩黄色一级生活大片| 尤物视频免费观看网站| 黄色美女av蜜桃网站| 午夜激情视频在线免费看| 亚洲国产一区二区精品专区| 最新福利视频一区二区| 成人午夜激情蜜桃999| 欧美视频在线观看一区二| 欧美日韩一区国产二区| 中文字幕专区一区二区| 免费观看成人激情视频| 熟女国产一区二三区熟女| 最近最新中文字幕亚洲| 欧美激情视频一区在线| 中文字幕日韩欧美国产| 久久免费看少妇高潮毛片| 男人天堂av一区二区| 会所按摩偷拍一区二区| 尤物国产一区二区三区| 国产人妻麻豆一区二区| 一区二区亚洲精品在线| 久久亚洲精精品中文字幕| 外国av在线免费观看| 亚洲国产精品自在久久| 国产av日韩一区二区| 久久久久精品国产亚洲| 最新亚洲伦理一区二区| 欧美国产午夜精品一区二区三区| 欧美久久免费鲁丝一二区| 精品日韩在线视频网站| 丝袜熟女高潮一区二区| 日本不卡一二区不久精品免费| 欧美激情成人在线免费观看| 丰满熟女啪啪啪一区二区| 大屁股熟女一区二区三区| 日本亚洲一区二区三级| 欧美色精品日韩在线视频| 五月婷婷六月丁香手机| av黄网在线观看高清| 99精品视频一区二区三区| 熟女国产一区二三区熟女| 久久国产亚洲欧美精品| 青青操免费在线视频观看| 中文一区二区三区欧美| 色综合久久天天综合网| 国产男女啪啪免费视频| av久久久一区二区三区| 有码人妻中文字幕在线| 欧美中文字幕人妻在线| 精品国产熟妇一区二区三区| 另类激情一区二区三区| 亚洲国产精品自在久久| 久久婷婷狠狠综合激情| 最好看的中文字幕欧美日韩| 久久久精品人妻在线视频| 国内自拍黄片在线观影| av免费在线观看不卡的| 激情视频免费在线观看| 男人天堂色男人在线视频| 国产乱对白刺激视频不卡| 亚洲中文字幕在线四区| 外国av在线免费观看| 在线观看福利中文字幕| 国产一级在线视频播放| 在线观看福利中文字幕| 国产精品自拍一级二级| 一区二区午夜在线视频| 欧美日韩高清国产精品| 热久久日韩中文字幕av| 国产一级熟女高潮大全| 黄片一区二区三区免费看| 有码人妻中文字幕在线| 欧美日韩美女视频在线| 亚洲男人天堂网久久一区| 国产日韩精品欧美一区色| 免费av中文字幕在线| 亚洲人妻巨乳中文字幕| 最近日本中文字幕中文| 成人午夜免费观看视频| 亚洲精品国产自在久久| 在线观看国产美女网站| 亚洲国产av午夜精品| 国产一区二区成人精品| 欧美激情视频在线网址| 欧美精品国产成人综合亚洲| 97在线人妻免费的视频| 日韩精品在线观看不视频| 亚洲午夜一区二区福利| 五月天 一区二区三区| 一区二区三区18久久久| 青草神马视频在线网址| 欧美日韩色精品人妻在线视频| 亚洲av综合色区一区二区偷拍| 午夜免费在线观看啪视频| 亚洲欧美色视频在线观看| 欧美精品伦理一区二区| 日韩欧美中文字幕系列| 四虎成人精品在永久在线| 在线一区二区三区网址| 91精品人妻一区二区三| 免费午夜在线欧美整片| 人人都爱看大香蕉操片| 久久久夜色精品亚洲网站| 欧美一二三区不卡视频频| 成年在线观看视频网站| 日韩精品三级黄色人妻| 久操在线视频免费观看| 国产又粗又长又猛视频| 男女爱爱视频免费国产| 亚洲国产一区二区精品专区| 人人妻人人澡人人精品| 国产欧美日韩亚洲综合| 免费看国产日韩欧美黄片| 国产手机精品自拍小视频| 色悠悠综合在线资源网站| 撸撸免费成人手机视频网| 水蜜桃久久夜色精品一区| 日韩中文字幕有码精品| 国产又粗又猛又爽免费| 日韩欧美在线观看免费| 日本岛国一区二区三区| 人妻精品人妻在线视频| 欧美日韩美女视频在线| 可以看黄的福利视频网站| 日韩一级黄片高清视频| 国产在线视频一二三区| 亚洲丝袜在线中文字幕| 桃色午夜一区二区三区| 亚洲第一页精品在线播放| 国产丝袜区一区二区三| 免费成人欧美一区二区| 国产一区二区三区裙底在线| 亚洲欧美日韩人成综合| 水蜜桃久久夜色精品一区| 春色校园综合激情亚洲| 国产一区二区三区尤物| 在线中文字幕欧美日韩| 大香蕉免费av在线观看| 大屁股熟女一区二区三区| 久久国产精品美女久久久| 最新福利视频一区二区| 亚洲一区二区少妇系列| 天天爱天天做久久狠狠| 在线一区三区精品视频| 国产精品一区二区在线| 午夜美女福利视频久久| 欧美激情视频在哪里看| 国产精品一区二区高潮| 在线免费播放中文字幕| 春色校园综合激情亚洲| 老熟女乱淫一区二区三区| 亚洲另类色区欧美日韩| 中文一区二区高清不卡专区 | 精品国产网站免费观看| 日韩极品少妇人妻系列| 性感一区二区三区在线| 免费观看成人激情视频| 人人妻人人澡人人精品| 大香蕉大香蕉在线视频| 国产精品乱子伦一区二区| 成人在色线视频在线观看| 裸体女医生性服务视频| 草草视频在线一区二区| 日本在线东京热在线观看| 日韩午夜福利在线入口| 大香蕉精品一区二区三区| 有码人妻中文字幕在线| 国产夫妻性生活自拍视频| 国产亚洲av成人噜噜噜| 午夜精品区一区二区三| 日韩精品视频在线观看完整版 | 亚洲中文字幕久久人妻| 精品人妻们的在线视频| 激情欧美一区二区三区| 黄瓜污视频在线免费观看| 最新黄色在线免费网站| 亚洲女厕所偷拍一区二区| 欧美日韩免费观看在线| 亚洲欧美色视频在线观看| 欧美午夜一区二区三区四区| 亚洲男人天堂网久久一区| 日日久久一区二区三区| 92欧美一区二区三区| 亚洲国产av午夜精品| 亚洲国产天堂av网站| 丝袜美腿在线一区二区| 日韩有码中文字幕视频| 五月婷中文字幕在线观看| 日本福利片国产午夜久久| 蜜桃在线免费观看视频| 久久精品国产毛片在看| 精品国产美女网站免费| av黄网页在线观看网站| 视频国产一区二区三区| 亚洲狠狠狠一区二区三区| 不卡在线视频一区二区| 污污污网站在线观看视频| 精国精品一区二区成人| 精品人妻少妇一区二区三区| 成人v精品蜜桃久久一区| 免费观看成人激情视频| 久久亚洲综合精品人妻| 99久久精品毛片免费| 国产精品自拍一级二级| av成人教育在线播放| 国产91肉丝在线观看播放| 欧美丰满老熟妇bbb| 国产男女免费完整版视频| 国产日韩欧美产一区二区| 中文字幕日韩有码国产| 中文字幕国产精品人妻| 色婷婷在线视频免费观看| 欧美激情一区二区三区牲牛牛| 久久久人妻蜜桃可以下载| 免费国产老熟女免费视频| 日韩黄片高清在线观看| av黄网页在线观看网站| 国产美女在线免费观看| 激情欧美一区二区三区| 国产精品欧美激情在线观看| 欧美码中文精品中文字幕| 亚洲人妻免费视频二区| 丁香婷婷色综合激情五月| 欧美色精品日韩在线视频| 开心五月激情综合婷婷色| 国产又粗又黄又猛又爽| 精品午夜福利短视频一区| 人妻精品人妻在线视频| 国产精品小视频免费看| 中文字幕亚洲精品乱码| 国产精品四区免费观看| 天天干夜夜操激情黄色| av黄网在线观看高清| 欧美日韩在线一区免费| 日韩中文一区二区三区精品| 一区二区亚洲中文字幕| 日韩黄色小说免费阅读| 一区二区三区伦理视频| 国产又色又粗又粗的视频| 亚洲一区二区在线中文字幕| 国产夫妻在线观看福利| 亚洲美女在线国产精品| 男女视频免费观看国产区| 99精品视频一区二区三区 | 日韩精品在线视频第一页| 一区二区三区女大学生| 免费在线观看不卡av网| 在线免费的特级黄片欧美| 欧美国产日韩男人的天堂| 美女三级国产在线观看| 人妻人久久精品中文字幕| 中文字幕好色爽视频综合网| 天天干天天插免费视频| 美女直播一区二区三区| 亚洲国产一区二区精品专区| 日韩美女在线视频一区| 动漫操人视频在线观看| 成人一区二区三区视频| 第一福利视频一区二区| 青青草久久这里只有精品| 蜜桃成人午夜免费视频| 婷婷六月丁香综合激情| 欧美人妻在线视频网站| 美女一抽一插啪啪试看| 亚洲中文字幕乱码精品区| 欧洲成人一区二区精视频| 欧美精品日韩精品国产成人| 青青草一个释放的网站| 欧美精品国产成人综合亚洲| 亚洲丝袜在线中文字幕| 免费观看女人裸体视频| 日韩av一级二级中文字幕| 欧美精品人妻在线播放| 精品久久久一区三区四区| 日韩午夜在线视频观看| 精品国产一区二区三区在线| 欧美激情综合久久久久| 日韩精品中文字幕av在线| 日韩久久人妻一区二区三区| 亚洲小视频在线观看视频| 好看的亚洲中文字幕在线| 黄片免费在线视频播放| 久久99精品一区二区三区| 久久久午夜视频在线观看| 尤物网站在线观看视频| 十八禁黄色免费污污污亚洲| 亚洲精品伊人久久久久| 婷婷啪啪激情五月天基地| 亚洲高清在线视频播放| 婷婷基地五月激情五月| 国产又粗又深又猛又爽| 欧美一区二区三在线播放| 欧美一区二区三区在线看| 欧美中文字幕资源在线| 激情在线视频中文字幕| 中出一区二区三区四区| 日韩美女美女三级视频| 国产一区二区中文字幕在线| 国产老太婆精品久久久久| 免费观看日韩欧美网站| 日韩又湿又黄的视频网站| 日韩久久国产亚洲av| 征服丰满的大屁股熟妇| 欧美日韩在线一区免费| 亚洲欧美在线观看啊啊啊| 在线播放1区2区3区| 激情欧美一区二区三区| 欧美成人午夜在线视频| 黄片一区二区三区免费看| 操美女的视频在线观看| 里崎爱佳av中文字幕| 亚洲 欧美在线不卡一区| 亚洲二区高清视频在线观看| 日本一区中文字幕在线播放| 成人午夜在线免费播放| 禁18网站在线免费观看| 成人午夜大香蕉人妻少妇| 亚洲一区二区少妇系列| 国产男女免费视频网站| 免费女初学生裸体视频| 国产精品99久久精品| 亚洲欧洲中文日韩av| 免费观看女人裸体视频| 高贵人妻精品一区二区| 日韩黄色一级片中文字幕| 韩国精品视频一区二区| 国产三级精品久久久久| 变态调教一区二区三区| 美女久久成人性亚洲av| 风韵多水的老熟妇仑片| 亚洲精品国产自在久久| 亚洲女同恋中文一区二区| 制服丝袜美腿一区二区三区| 欧美一二三区高清视频| 亚洲一区二区国产精品久久| 色偷偷亚洲一区二区三区| 日韩美女hd高清视频| 尤物视频免费观看网站| 日本人妻中文字幕乱码系列| 在线国产日韩欧美首页| 丝袜人妻国产一二三区| 免费女初学生裸体视频| 日韩区二区三区中文字幕| 国产成人亚洲精品一区二区| 蜜桃一区二区三区在线观看| 青青草在线免费视频网站| 欧美国产日韩在线一区二区| 久草免费在线公开视频| 日韩有码中文字幕视频| 胖妇一级视频一级黄色| 九一精品人妻一区二区三区| 午夜免费啪在线观看视频| 国产一级熟女高潮大全| av在线网站丝袜观看| 国产女人网站在线观看| 丝袜人妻社长室中文字幕| 日韩美女视频在线观看| 午夜久久精品福利视频| 中文字幕人妻熟妇伦伦| 国产精品乱子伦一区二区| 日韩美女视频在线观看| 国产又粗又猛又爽免费| 国产老熟女高潮精品网站| 蜜臀av国内精品久久久| 日韩av在线一卡一带| 最新福利视频一区二区| 男女后入视频在线观看| 中文字幕在线有码人妻| 人妻激情综合久久久久| 亚洲人妻免费视频二区| 十八禁看网站在线观看| 日本老熟女一区二区三区| 国产男女免费完整版视频| 国产欧美第一区第二区| 国产精品久久久久久亚洲毛片| 青青草免费手机在线视频| 亚洲午夜无av毛片久久| 中文字幕国产精品人妻| 亚洲中文字幕久久人妻| 蜜桃视频免费观看视频| 欧美成人国产亚洲自拍| 国产又粗又长又爽又猛| 天天操天天干国语对白| 玩弄少妇人妻中文字幕| 天天爽夜夜爽人人爽曰| 岛国尤物视频在线观看| 日韩久久人妻一区二区三区| 人妻偷乱视一区二区三区| 夜夜夜亚洲一区二区三区| 国产激情男女免费视频| 女人裸体视频免费网站| 99热最新成人国产精品| 国产成人亚洲精品一区二区| 国产精品国三级国产专区| 好看的日本中文字幕视频| 性激烈欧美日韩中文字幕| 日本亚洲一区二区三区在线播放| 欧美精品在欧美一区一女| 美女直播一区二区三区| 亚洲黄色片一区二区三区| 亚洲免费在线视频播放| 一区二区三区激情在线观看| 国产一区二区不卡老阿姨| 会所按摩偷拍一区二区| 欧美三级成人一区二区| 久久久午夜视频在线观看| 欧美一区二区三区的区| 欧美国产日韩男人的天堂| 免费看日韩一级片黄色| 韩国精品视频一区二区| 最新亚洲人妻中文字幕| 夜夜躁日日躁狠狠久久| 熟女人妇熟妇视频系列| 最新激情中文字幕视频| 欧美性做爰一区二区三区| 久久精品久久亚洲春色| 亚洲免费香蕉视频一区二区| 中文字幕有码最近熟女| 青青草针对华人免费视频| 国产又色又粗又粗的视频| 后进丰满少妇人妻大屁股| 国产熟女高潮一区二区| 久久国产亚洲欧美精品| 大香蕉大香蕉在线视频| 亚洲欧美日韩久久亚洲区| 成人亚洲国产综合精品| 青草视频在线视频在线| 欧美福利视频在线播放| 久草免费手机在线视频| 日本久久久久免费观看视频| 色悠悠综合在线资源网站| 色呦呦国产精品区一区二 | 欧美人体一区二区三区| 久久久久久激情欧美国产| 天天操天天干国语对白| 97人干人人插人人看| 91成人国产短视频在线| 色婷婷一区二区蜜桃视频| 欧洲成人一区二区精视频| 中文字幕有码日韩精品| 一区二区亚洲中文字幕| 尤物直播视频在线观看| 国产又粗又黄又猛视频| 中文字幕欧美精品国产| 欧美激情成人在线免费观看| 国产又爽又黄又紧又粗| 日韩美女福利视频大全| 欧洲无套内射一区二区| 青草精品在线视频看看| 欧美一区二区三区自拍| 国产精品久久国产三级国| 亚洲无一区二区三区在线| 欧美丰满人妻免费视频| 国内自拍黄片在线观影| 中文字幕有码综合色亚洲| 熟女av俱乐部久久久久| 国产伦理一区在线观看| 蜜桃臀av永久免费看片| 人妻熟女视频在线观看| 欧美精品日韩精品国产成人| 不卡区在线中文字幕在线| 欧美成年午夜免费全部| 色婷婷一区二区蜜桃视频| 色综合天天综合天天做| 久草精品在线观看免费| 日日狠狠久久偷偷综合色| 亚洲第一黄色日韩欧美| 国产精品美女制服诱惑|